60 лет назад люди впервые спустились на дно марианской впадины

Марианский желоб

6. Жидкая сера

Вулкан Дайкоку, который находится на глубине около 414 метров на пути к Марианской впадине, является источником одного из самых редких явлений на нашей планете. Тут находится озеро чистой расплавленной серы. Единственным местом, где можно обнаружить жидкую серу, является спутник Юпитера – Ио.

В этой яме, названной «котлом», бурлящая черная эмульсия кипит при 187 градусах по Цельсию. Хотя ученым не удалось исследовать это место детально, возможно глубже содержится еще больше жидкой серы. Это может раскрыть секрет происхождения жизни на Земле.

Согласно гипотезе Геи, наша планета является одним самоуправляемым организмом, в котором все живое и неживое соединено для поддержания ее жизни. Если эта гипотеза верна, то ряд сигналов можно наблюдать в естественных циклах и системах Земли. Так соединения серы, созданные организмами в океане, должны быть достаточно стабильны в воде, чтобы позволить им перейти в воздух, и вновь вернуться на сушу.

7. Мосты

В конце 2011 года в Марианской впадине было обнаружено четыре каменных моста, которые простирались с одного до другого конца на 69 км. Похоже, что они сформировались на стыке Тихоокеанских и Филиппинских тектонических плит.

Один из мостов Dutton Ridge, который был открыт еще 1980-х годах, оказался невероятно высоким, как небольшая гора. В самой высокой точке, хребет достигает 2,5 км над «Бездной Челленджера».

Как и многие аспекты Марианской впадины, предназначение этих мостов остается неясным. Однако сам факт того, что в одном из самых загадочных и неизведанных мест, обнаружили эти формирования, является удивительным.

ПЕРВЫЕ В БЕЗДНЕ

История изучения Марианского желоба началась в 1875 году с экспедиции научно-исследовательского судна «Челленджер». Измеряли глубину вручную, диплотом, основу которого составляют свинцовая гиря и трос. Первый замер показал 8184 метра и стал отправной точкой для последующих открытий.

Шагая в ногу с техническим прогрессом, с годами ученые достигали новых и новых глубин. В 1957 году советские исследователи на научном судне «Витязь» при помощи эхолота определили глубочайшую отметку Бездны Челленджера — 11 034 метра. Однако из-за несовершенства прибора эта цифра не признана точной, ведь с увеличением давления меняются электромагнитные и акустические свойства воды, что вносит помехи в работу приборов. Впрочем, «Витязь» все же сделал свое открытие, обнаружив ниже 7 тысяч метров жизнь в виде барофильных бактерий, приспособленных к существованию на глубинах с высоким давлением.

По официальным данным на сегодняшний день, максимальная глубина Марианской впадины составляет 10 994 метра. Эта цифра может превышать отметку 11 километров, так как сложный рельеф океанского дна, состоящий из подводных хребтов и расщелин, нуждается в более детальном картографировании. Однако неоспорим тот факт, что горы (если считать от уровня моря) не настолько высоки, насколько глубок океан. Высочайшая точка поверхности Земли, гора Джомолунгма, — всего лишь 8848 метров.

Реально ли погрузиться человеку на дно глубоководной бездны, где давление воды более чем в тысячу раз превышает нормальное атмосферное? Единственными до Кэмерона исследователями Марианской впадины были лейтенант ВМС США Дон Уолш и швейцарский океанолог Жак Пикар. 23 января 1960 года в батискафе «Триест» они опустились на 10 916 метров, доказав человечеству, что даже самые опасные глубины могут приоткрыть завесу своих тайн. По существу батискаф представлял собой небольшую металлическую сферу с иллюминаторами, присоединенную к огромному баку с горючим. Аппарат не был оборудован ни камерами, ни приборами для глубоководных исследований, на дне Тихого океана он провел не более 20 минут, однако этого хватило, чтобы убедиться в существовании жизни в бездне.

«Чтобы в должной мере продемонстрировать всю значимость этого погружения, «Триест» опустился на дно в нескольких футах от рыбы — настоящей рыбы! — к которой в ее непознанном мире присоединился этот железный монстр, пожирающий бензин и рассекающий темноту мощным лучом света. Наша рыба стала мгновенным ответом на вопрос, которым тысячи океанологов задавались не один десяток лет», — вспоминал Пикар в отчете о погружении.

Сегодня мало кого удивишь стартом очередного космического корабля и пребыванием человека в невесомости за пределами Земли. Глубоководное погружение по сложности сравнимо с полетом в космос, однако должно было пройти более полувека, чтобы человек вновь рискнул покорить загадочную бездну Тихого океана.

Чудище, ау!

А почему бы и нет? Во всяком случае, в незапамятные времена чаморро — коренные жители Марианских островов — верили в существование морского монстра, который время от времени показывался из глубин в районе острова Гуам. Чтобы его задобрить, люди при носили человеческие жертвы. Кстати, именно благодаря мифическому монстру женщины островов установили полный матриархат. Согласно легендам, они добились уважения мужчин, поскольку сумели обуздать это чудище: из своих длинных волос сплели, превосходный невод, в котором зверь запутался и сгинул. Впрочем, если даже и проститься с надеждами на встречу с живым страшилищем, то почему бы не поискать в глубине руины древних затонувших цивилизаций? Например, в 1985 году в районе японского острова Йонагуни (а это примерно тот же регион Тихого океана) под водой были обнаружены каменные конструкции, очень похожие на остатки древнего города. Будем надеяться, что в следующем путешествии Кэмерон что-то увидит! Впрочем, ему ещё предстоит поработать над отснятым материалом, и не исключено, что в этих кадрах промелькнёт то, что режиссёр не заметил невооружённым глазом.

Огюст Пикар: от небес до глубин

История покорения самой глубокой точки Мирового океана неразрывно связана с именем швейцарского учёного Огюста Пикара, физика и изобретателя.

Огюст Пикар, родившийся в семье профессора химии, в 1930-х годах увлекся аэронавтикой и разработал первый в мире стратостат — воздушный шар со сферической герметичной гондолой из алюминия, позволяющей совершать полёты в верхних слоях атмосферы при сохранении нормального давления внутри.

На своем аппарате Пикар, которому к тому моменту было уже 47 лет, совершил 27 полетов, достигнув высоты в 23000 метров.

Швейцарский ученый, физик и изобретатель Огюст Пикар, 1931 год. 

В ходе экспериментов со стратостатом Пикар понял, что те же принципы можно использовать и для покорения морских глубин. Так швейцарский ученый начал работать над созданием аппарата, способного погружаться на большие глубины.

Вторая Мировая война прервала работы Огюста Пикара. Несмотря на то, что Швейцария оставалась нейтральной страной, научная деятельность в это время была серьёзно осложнена и там.

Тем не менее, в 1945 году Огюст Пикар закончил строительство глубоководного аппарата, получившего название батискаф.

Батискаф Пикара представлял собой высокопрочную герметичную стальную гондолу для экипажа, которая прикреплялась к большому поплавку, наполненному бензином для обеспечения положительной плавучести. Для погружения использовалось несколько тонн стального или чугунного балласта в виде дроби, удерживаемого в бункерахэлектромагнитами. Для уменьшения скорости погружения и для всплытия электрический ток в электромагнитах отключался, и часть дроби высыпалась. Такой механизм обеспечивал всплытие даже в случае отказа оборудования, через определённое время просто разряжались аккумуляторы — и вся дробь высыпалась.

Батискаф получил название FNRS-2. FNRS означало аббревиатуру Бельгийского Национального Фонда Научных Исследований (Fonds National de la Recherche Scientifique), который финансировал работы Пикара.

Любопытно, что название FNRS-1 носил… стратостат Пикара. Сам учёный на сей счет шутил: «Эти аппараты чрезвычайно сходны между собой, хотя их назначение противоположно. Возможно, судьбе было угодно создать это сходство именно для того, чтобы работать над созданием обоих аппаратов мог один учёный».

История создания

Батискаф «Триест» был сконструирован швейцарским учёным Огюстом Пиккаром с учётом его предыдущей разработки, первого в мире батискафа FNRS-2. Большую помощь в постройке батискафа оказал его сын, Жак Пиккар. Своё название аппарат получил в честь итальянского города Триест, в котором были произведены основные работы по его созданию. «Триест» был спущен на воду в августе и совершил несколько погружений в Средиземном море с 1953 по 1957 год. Основным пилотом стал Жак Пиккар, а в первых погружениях также участвовал его отец, Огюст Пиккар, которому в то время уже исполнилось 69 лет. В одном из погружений аппарат достиг рекордной на тот момент глубины 3150 м.

В «Триест» был куплен ВМС США, так как в то время Соединенные Штаты стали проявлять интерес к исследованию океанских глубин, но ещё не располагали подобными аппаратами. После покупки конструкция батискафа была доработана — на заводе Круппа в городе Эссен, Германия, была изготовлена более прочная гондола. Новая гондола оказалась несколько тяжелее, и длину поплавка тоже пришлось увеличить, чтобы вместить больший объём бензина. Основным пилотом и техником аппарата в 1958—1960 годах оставался Жак Пиккар, имевший к тому времени большой опыт погружений.

Under the Pole

Проект Deepsea Under the Pole, организованный компанией Rolex в 2010 году, – это первая в истории экспедиция по изучению арктических глубин. Из всего оборудования, которое использовалось во время исследовательских работ, только часы Rolex Deepsea продолжали функционировать должным образом на протяжении всей экспедиции. В 2017 году была проведена новая экспедиция Under The Pole III, в задачи которой входило изучение водных масс Арктики и Антарктики для лучшего понимания роли океана в регуляции климата, изучение явления биолюминесценции, совершенствование технологий подводного погружения и привлечение внимания молодежи к океаническим исследованиям. 

Характеристики

Подводный аппарат предназначен только для одного пилота, так как наружный диаметр сферической гондолы составляет лишь 1,1 метра (внутренний диаметр всего 97 см), что, в свою очередь, обусловлено её большим весом, от которого зависит объём поплавка, заполненного специальной пеной ISOFLOAT (разработана специально для этого проекта Роном Аллумом, состоит из полых стеклянных сфер в полимерной смоле). Твёрдость пены относительна — на предельной глубине размер поплавка всё же ужимается на 5 см. Идея твердой пены повторяет принцип, применённый финскими инженерами в строительстве батискафов «Мир». Поплавок составляет 70 % объёма батискафа. Всё это определяет общие размеры аппарата и желание создателей сделать его более компактным и удобным для транспортировки. Стальная гондола состоит из двух полусфер, отпрессованных из плоских отливок. Значительный слой металла внутри полусфер снят механически, так как металл внутри отливки имеет меньше дефектов. Это тоже опыт изготовления «Миров». Стальные стенки гондолы толщиной 6,4 см были протестированы на способность выдерживать требуемое давление в 114 000 кПа в барокамере Университета штата Пенсильвания. Изготовители батискафов-предшественников не имели такой возможности, в лучшем случае довольствовались испытанием уменьшенных моделей.

Форма батискафа заимствует поведение рыб кораллового рифа, плавающих головой вниз. Это позволяет быстро погружаться и всплывать.

Гондола располагается у основания вертикально-погружаемого аппарата длиной 7,3 метра и весом 11,8 тонн. При транспортировке на судне батискаф находится в горизонтальном положении. Балласт весом 500 кг позволяет аппарату погружаться на необходимую глубину и при его сбросе всплывать на поверхность; если штатная система сброса балласта не сработает, то задействуется вспомогательная электрическая система сброса балласта для всплытия аппарата. На борту имеются два газовых баллона со сжатым кислородом, что позволяет пилоту находиться под водой 56 часов. Система жизнеобеспечения аппарата поглощает углекислый газ, а водяные пары, образующиеся при дыхании и потовыделении, конденсируются на прохладных внутренних стенках гондолы и стекают вниз к её основанию в специальные резервуары. Затем конденсат собирается в сумку и в случае необходимости пилот может выпить воду с помощью специальной трубочки, фильтрующей загрязнения[источник не указан 267 дней].

Периодически, данные о внутреннем давлении, содержании кислорода, температуре воздуха в гондоле отправляются на корабль сопровождения для того, чтобы специалисты наверху могли оценить ситуацию и в случае необходимости вернуть аппарат на поверхность. Одежда пилота является огнестойкой, также на борту имеется костюм с подогревом на случай нештатной ситуации, так как температура воды на большой глубине весьма низкая (+1…+4 °C)[нет в источнике].

Скорость передвижения субмарины составляет 3 узла по горизонтали и 2,5 по вертикали. Пилот управляет батискафом с помощью джойстика. Аппарат способен разворачиваться вокруг своей оси благодаря 12 электромоторам с водомётными движителями. Скорость всплытия-погружения намного больше и регулируется только сбросом балласта.

На борту находятся 180 систем, 1500 электронных плат, приборы мониторинга и контроля, аккумуляторы, системы жизнеобеспечения, 3D-камеры и светодиодное освещение. Каждая батарея размещается в пластиковом корпусе, погружённом в ванну с силиконовым маслом, что позволяет электронике подвергаться воздействию внешнего давления, не приходя в непосредственный контакт с морской водой. Аппарат снабжен двумя «стрелами», на одной из которых расположены камеры, на другой — прожекторы. Бортовая система связи способна передавать сигнал на расстояние 30 км под водой. Deepsea Challenger оснащён видеокамерой Red Epic 5K с разрешением около 14 мегапикселей, а также наружной осветительной светодиодной панелью длиной в 2,5 метра и сигнальными огнями.

Освоение океана

Джеймс Камерон не хотел, чтобы его погружение было единичным случаем, он надеется, что с помощью его аппарата можно будет в дальнейшем исследовать океанические глубины.

Сегодня разрабатываются и другие батискафы для погружения на большие глубины, которые в ближайшем будущем будут исследовать океаническое дно. Один из таких аппаратов DeepFlight Challenger принадлежит бывшему инвестору в области недвижимости Крису Уэлшу. Пока этот батискаф только начинают испытывать.

Дизайн батискафа основан на дизайне самолета, поэтому он будет «летать» в глубинах океана, как выразился сам Уэлш.

Эрик Шмидт, глава совета директоров компании , помог финансировать другой глубоководный аппарат, построенный американской компанией морских технологий Doer Marine. Этот двухместный аппарат также будет исследовать морские глубины.

Научный интерес

Несмотря на то, что для возвращения человека на дно Марианской впадины потребовалось более пятидесяти лет, ученые за это время дважды отправляли туда беспилотные субмарины: японскую Kaiko в 1995 году, и в 2008 году — американскую Nereus.

Другие исследователи, такие как шотландская группа ученых Oceanlab, направляли на дно впадины небольшие аппараты для сбора образцов и фотосъемки.

В последнее время интерес к океаническим глубинам заметно вырос.

Ученые открывают новые формы жизни — от глубинных рыб до похожих на креветок падальщиков, названных амфиподами, которые способны противостоять колоссальному давлению на дне океана.

Исследователи также пытаются выяснить, какую роль океанические впадины играют в землетрясениях, так как сами впадины образуются на границах тектонических плато.

Некоторые ученые считают, что подводные перемещения этих плато являются главной причиной возникновения землетрясений, таких разрушительных как в прошлом году в Японии.

Кэмерон не хочет, чтобы его миссия стала одноразовым событием. Напротив, он надеется, что это начало детального изучения мирового океана.

К его батискафу вскоре могут присоединиться другие субмарины, создаваемые для изучения морских глубин.

Одна из них — это подводная лодка DeepFlight Challenger, которую при поддержке владельца компании Virgin Ричарда Брэнсона создал бывший инвестор в недвижимость Крис Уэлш.

Дизайн субмарины заимствован у самолетов. Уэлш говорит, что он «полетит» на ней к глубинам океана.

Тем временем Эрик Шмидт из компании Google финансирует создание другой субмарины Doer Marine по технологии американских подводных лодок. Планируется, что в ней будут работать от двух до трех человек.

Примечания

  1. Тан, Кер . National Geographic Society (25.03.2012). Дата обращения 27 марта 2012.
  2. ↑ . MSNBC (25.03.2012). Дата обращения 27 марта 2012.
  3. . bbc.co.uk (22.02.2012). Дата обращения 27 марта 2012.
  4. . National Geographic Society. Дата обращения 27 марта 2012.
  5. . Deepsea Challenge (National Geographic). Дата обращения 27 марта 2012.
  6. . Deepsea Challenge (National Geographic). Дата обращения 27 марта 2012.
  7. . Deepsea Challenge (National Geographic). Дата обращения 27 марта 2012.
  8. . telegraph.co.uk (25 March 2012). Дата обращения 27 марта 2012.
  9. . Deepsea Challenge (National Geographic). Дата обращения 27 марта 2012.

Интересные факты

  • Джеймс Кэмерон проходил подготовку, которая включала в себя водолазные работы.
  • Deepsea Challenger более чем в 10 раз легче своего предшественника — батискафа «Триест», 11,8 тонн к 150 тоннам у «Триеста», также он содержит значительно больше научного оборудования и может погружаться и всплывать с большей скоростью, «Триест» спускался за 4 часа 48 минут, поднимался за 3 часа 15 минут, в то время как Deepsea спускается за 2 часа, а поднимается за 1 час;
  • «Триест» находился на дне 20 минут, экипаж не мог делать фотографии, Deepsea же пребывал на дне 6 часов и сумел сделать не только снимки, но и высококачественную видеозапись.
  • На строительство аппарата Deepsea Challenger ушло восемь лет.

Решающий спуск

Утром 20 января 1960 года военно-морскую базу США на острове Гуам в Марианском архипелаге покидал странный караван. Во главе его шёл эсминец «Льюис», а за ним на длинном буксире покачивался на волнах батискаф «Триест». Жак Пикар и Дональд Уолш спустились в шлюпку и двинулись к батискафу. Они услышали, как один из зоологов крикнул им вслед: «Ради Бога, углядите в этой пропасти хотя бы маленькую рыбку!». Исследователи перебрались в рубку аппарата, затем сошли вниз по шахте, ведущей в сферу, и захлопнули за собой люк. В 8:23 утра 23 января 1960 года «Триест» принял водяной балласт и начал долгий и опасный путь к рекорду. Через полчаса, на глубине 170 метров, аппарат пошёл вниз ровнее, а перед этим он четыре раза подскакивал, раскачиваемый внутренними волнами. Время от времени чёрная мгла за иллюминаторами освещалась скоплениями фосфоресцирующего планктона. Давление на корпус росло лавинообразно и на глубине 7 тысяч метров достигло 700 килограммов на квадратный сантиметр! Пикар и Уолш зашли за черту, за которой ещё никогда не был человек! С каждой минутой приближалась долгожданная цель… На часах 12:56. Наконец эхолот показал дно. До него оставалось не более ста метров. Потом потянулись минуты. А за мгновение до касания дна в светлый круг прожектора вплыла… рыба! Длиной сантиметров 30. Это была подлинная сенсация! Ведь жизнь, вездесущая жизнь, и здесь — в бездне! Значит, и сюда, в эту мрачную, страшную пропасть попадает кислород. Значит, течения перемешивают весь океан и потому океанские глубины не должны быть превращены в свалку радиоактивных отходов! Рыба медленно плыла по дну на самой границе ила и воды. И тут к ней присоединилась… тёмно-красная креветка! Кто ещё живёт в этой кошмарной пучине?

ГЛУБИНА 10 898

Ранним весенним утром, до восхода солнца, в западной части Тихого океана команда Кэмерона готовит батискаф к спуску. Условия для погружения не самые благоприятные, но Deepsea Challenger попадает в водную стихию и стремительно, со средней скоростью 1,8 метра в секунду, уже через 35 минут приближается к первой значимой отметке. 3800 метров — на такой глубине 100 лет назад затонул «Титаник». Еще 15 минут, и Кэмерон преодолевает глубину, на которой покоится линкор «Бисмарк» — 4760 метров. Вот уже счетчик показывает 6500 метров — эта отметка покорилась русскому батискафу «Мир», французскому «Наутилусу» и японскому «Синкай 6500». Скорость погружения снижается. Кэмерон преодолевает максимальную глубину, на которую погружался обитаемый китайский глубоководный аппарат «Цзяолун» — 7062 метра.

На стенках батискафа уже давно образовались крупные капли конденсата — показатель того, что температура воды упала с 30 до 2 ºС.

Водяной пар, образованный дыханием пилота и его потом, конденсируется на холодных металлических стенках сферы и затем накапливается в пластиковой бутылке. В чрезвычайной ситуации пилот может пить эту воду.

Датчики батискафа передают на поверхность сообщения с точными данными о содержании в кабине кислорода, углекислого газа и температуре, чтобы врач на корабле сопровождения мог контролировать самочувствие пилота. До дна Марианской впадины еще около четырех километров.

Когда луч прожектора батискафа отражается от поверхности, до дна остаются считаные метры. Кэмерон снижает скорость и плавно приземляет аппарат. Как, по-вашему, должна выглядеть настоящая бездна? Остроконечные камни, неровности и опасности на каждом шагу? Отнюдь нет. Бездна Челленджера, по рассказам Кэмерона, гладкая, как яичная скорлупа, и почти безжизненная. Ни рыб, ни других живых существ, за исключением креветкообразных донных обитателей не более дюйма в длину.

Перемещаясь по пустынному дну, Кэмерон берет несколько проб грунта, в котором позже были найдены новые виды бактерий. Из-за неисправных двигателей правого борта батискаф двигается по склону крайне медленно. Еще несколько метров — и из-за поломки гидравлической системы сбор грунта становится невозможен. Колоссальное давление воды выводит из строя последний двигатель, и режиссер оказывается не в силах делать съемку. Максимальная глубина, на которую погрузился Кэмерон, составила 10 898,5 метра.

Три часа на дне Марианского желоба и 70 минут подъема — безусловно рекордные показатели. Впрочем, для Кэмерона погружение не было погоней за рекордом — это была мечта исследователя, мечта фантастически смелого человека, в которую поверили десятки единомышленников.

Каково это — уйти под воду на 11 километров? «Наконец я в самом отдаленном месте на планете Земля, для достижения которого потребовались все это время, энергия и технологии. Я чувствовал себя отрезанным от всего остального мира, без единой возможности на спасение, в месте, которое никогда прежде не видело человечество. И… мне позвонила жена. Конечно, было приятно, однако пусть это станет уроком для всех мужчин. Вы можете думать, что в силах сбежать, но у вас ничего не получится», — говорит в одном из интервью Джеймс Кэмерон.

На этом режиссер не планирует завершать карьеру глубоководного исследователя. Впереди еще слишком много тайн и открытий. Ведь до сих пор невозможно со стопроцентной уверенностью сказать, насколько глубока Бездна Челленджера.

Преодолев более десятка километров к центру планеты, человек почувствует себя в полном уединении, но никогда не будет одинок. Океан напомнит о своем присутствии холодными и теплыми течениями, рыбами и скатами, расплывчатым солнцем над водой или манящей бездной. Океан — живой организм, который не отпустит, пока ноги не ступят на твердую землю, и который обязательно приоткроет человечеству еще не одну тайну.

Создание «Триеста»

Первое испытательное погружение FNRS-2 состоялось в Дакаре 25 октября 1948 года, и пилотом батискафа был, разумеется, сам его создатель. Правда, никаких рекордов в тот раз поставлено не было — аппарат погрузился всего на 25 метров.

Дальнейшие работы с батискафом оказались осложнены тем, что бельгийский фонд прекратил финансирование. Огюст Пикар в итоге продал FNRS-2 ВМФ Франции, специалисты которого пригласили ученого для строительства новой модели батискафа, получившего название FNRS-3.

Идеи батискафов, тем временем, захватывали мир, и новую модель намеревались строить в Италии. В 1952 году Огюст Пикар, оставив FNRS-3 на французских инженеров, отправляется в Италию, чтобы заняться разработкой и строительством батискафа, получившего название «Триест».

Батискаф «Триест». 

«Триест» был спущен на воду в августе 1953 года. В работах по строительству батискафа Огюсту Пикару помогал его сын, Жак Пикар, которому и предстояло стать главным пилотом нового глубоководного аппарата.

В 1953-1957 годах «Триест» проводит серию успешных погружений в Средиземном море, и даже достигает фантастической по тем временам глубины в 3100 метров. В первых погружениях «Триеста» наравне с Жаком Пикаром участвует и сам создатель батискафа Огюст Пикар, которому исполнилось к тому времени 69 лет.

Проект «Нектон»

Исследовательские работы «Триеста» требовали серьёзных капиталовложений. Каждый спуск аппарата необходимо было обеспечивать поддержкой нескольких судов сопровождения. Батискаф Пикара к месту погружения необходимо было буксировать, поскольку своего горизонтального хода он не имел.

В 1958 году «Триест» был приобретен ВМФ США, проявившим интерес к исследованию морских глубин. Вместе с аппаратом в Америку отправился и Жак Пикар, которому предстояло обучать управлению батискафом американских специалистов.

Прочность, заложенная в конструкции «Триеста», позволяла погружаться на максимальные глубины, известные в Мировом океане. При этом сам Жак Пикар отмечал, что для большинства исследований этого просто не требуется, поскольку 99 процентов дна Мирового океана расположено на глубинах не более 6000 метров. Правоту Пикара подтвердила последующая история — более поздние глубоководные аппараты, включая известные российские «Мир-1» и «Мир-2», строились именно с расчётом на глубину около 6000 метров.

Однако человечество любит ставить перед собой максимальные задачи, поэтому «Триест» решено было направить для покорения самой глубокой точки Мирового океана — Марианской впадины в Тихом океане, глубина которой достигает 11 км.

Батискаф «Триест» перед погружением, 23 января 1960 года.

Эта операция, в которой были задействованы силы ВМФ США, получила кодовое название «Проект «Нектон». Для её осуществления были проведены серьёзные доработки аппарата, в частности, в Германии на заводе Круппа была изготовлена новая, более прочная гондола.

В конце 1959 года «Триест» был доставлен на военно-морскую базу США на тихоокеанском острове Гуам. В годы Второй Мировой войны остров был ареной кровопролитных сражений, а к моменту проведения «Проекта «Нектон» в джунглях продолжал скрываться как минимум один японский солдат, не считавший войну оконченной.

Впрочем, это никак не отразилось на подготовке исторического погружения. После нескольких пробных спусков на 5 км и 7 км (что уже было рекордом для того времени), было дано «добро» на так называемое «Большое погружение».

Обитатели Марианской впадины

2. Гигантские токсичные амебы

Несколько лет назад на дне Марианской впадины обнаружили гигантских 10-ти сантиметровых амеб, называемых ксенофиофоры.

Эти одноклеточные организмы, вероятно, стали такими большими из-за среды, в которой они обитают на глубине 10,6 км. Холодная температура, высокое давление и отсутствие солнечного света, скорее всего, способствовали тому, что эти амебы приобрели огромные размеры.

Кроме того, ксенофиофоры обладают невероятными способностями. Они устойчивы к воздействию множества элементов и химических веществ, включая уран, ртуть и свинец, которые убили бы других животных и людей.

3. Моллюски

Сильное давление воды в Марианской впадине не дает шанса на выживание ни одному животному с раковиной или костями. Однако в 2012 году в желобе возле серпентиновых гидротермальных источников были обнаружены моллюски. Серпентин содержит водород и метан, который позволяет формироваться живым организмам.

Каким образом моллюски сохранили свою раковину при таком давлении, остается неизвестным.

Кроме того, гидротермальные источники выделяют другой газ – сероводород, который смертелен для моллюсков. Однако они научились связывать сернистое соединение в безопасный белок, что позволило популяции этих моллюсков выжить.

Список источников

  • wiki2.org
  • wiki.sc
  • www.infoniac.ru
  • www.rolex.com
  • wiki.monavista.ru
  • www.bagira.guru
  • wiki.bio
  • www.bbc.com
  • AfterShock.news
  • Discovery-Russia.ru
Оцените статью
Добавить комментарий